rounding maximum 1857b cf
CF1680F Lenient Vertex Cover 题解
CF1680F Lenient Vertex Cover 题解 这道题和「JOISC 2014 Day3」电压非常类似,或者说就是一道题。 题意就是给你一个图,问能否对所有点黑白染色,允许最多一条边的两个顶点都染成黑色。 黑白染色后其实就是一个二分图,那如果有一条边的两个顶点染成黑色,就是说去掉该边 ......
题解:CF237D
题目传送门 思路 构造 \(k\) 个集合,使这些集合满足以下性质: 集合的并集为 \(V\)。 对于树 \(s\) 中的任意一条边 \((a,b)\),都能在 \(k\) 个集合中找到一个集合 \(x\) 使得 \(a,b\in x\)。 对于树 \(s\) 中的任意一个点 \(a\),所有在 \ ......
CF1168C And Reachability
CF1168C And Reachability And Reachability - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 目录CF1168C And Reachability题目大意思路code 题目大意 给定一个长度为 \(n\) 的数组 \(a\) 。 你可以选择一个 ......
Educational Codeforces Round 154 (Rated for Div. 2) B. Two Binary Strings
给定两个长度相等的 \(01\) 字符串 \(a\) 和 \(b\) 。每个字符串都是以 \(0\) 开始以 \(1\) 结束。 在一步操作中,你可以选择任意一个字符串: 选择任意两个位置 \(l, r\) 满足 \(s_l = s_r\) ,然后让 \(\forall i \in [l, r], ......
CF1168C
CF1168C 题面及数据范围 Ps:链接为洛谷OJ。 发现对于每一个 \(i\) 需要求经过若干次转移使第 \(j\) 个二进制位为 \(1\) 的最近位置 \(k\),查询时,当 \(k \leq y\) 便可以到达。 下文的位无特殊说明位均指二进制位。 设 \(f[i][j]\) 为 \(i\ ......
CF1548E Gregor and the Two Painters
Day \(\text{叁拾肆}\)。 DS 写不动了,标题也取不动了www。 类似 Day 1 CF1270H Number of Components,每个连通块中选出一个代表的点。令一个连通块内所有点按照 \(v_{i,j}=\{a_i+b_j,i,j\}\) 排序,对最小的 \(v_{i,j ......
【codeforces】cf880div2 vp小结
碎碎念 多测要清空!清空从0开始循环!!!!!!!爆哭 不知道因为初始化和清空罚了多少次了呜呜呜呜呜 这次真的真的记得清空了,但是因为一直习惯下标从1开始所以导致for循环清空的时候a[0]没有清空 A和B简简单单的两个签,但是C的难度就突然升高,补题的时候发现1700的时候真的...犹豫了一下要不 ......
Educational Codeforces Round 155 (Rated for Div. 2) B. Chips on the Board
给一个 \(n \times n\) 的棋盘,和两个大小为 \(n\) 的 \(a\) \(b\) 数组。\(a_i\) 代表第 \(i\) 列的权值,\(b_i\) 代表第 \(i\) 列的权值。坐标 \((i, j)\) 的权值为 \(a_i + b_j\) 。 现在需要放若干个芯片和到棋盘上, ......
Codeforces Round 697 (Div. 3) A. Odd Divisor
给定一个正整数 \(n\) ,询问是否存在一个 \(> 1\) 的奇数因子。 在唯一分解定理下观察 \(n\) ,发现若存在除 \(2\) 以外的质因子,则 \(n\) 存在 \(> 1\) 的奇数因子。 换句话说 \(n\) 不是二次幂形式则存在 \(> 1\) 的奇数因子。 view #incl ......
Codeforces Round 895 (Div. 3) B. The Corridor or There and Back Again
你在一个向右延申的无限坐标轴上,且你初始在坐标 \(1\) 。有 \(n\) 个陷阱在坐标轴上,第 \(i\) 个陷阱坐标为 \(d_i\) ,且会在你踩上这个陷阱的 \(s_i\) 秒过后发动。这时候你不能进入坐标 \(d_i\) 或者走出坐标 \(d_i\) 。 你需要确定最远的 \(k\) , ......
CF1886
A 给你一个正整数 \(n\),问是否存在 \(3\) 个正整数 \(a,b,c\) 满足 \(a+b+c=n\) 且 \(a,b,c\not\equiv 0 \pmod{3}\)。 分类讨论: 如果 \(n \not\equiv 0 \pmod{3}\) :若 \(n\le 5\) 则无解,否则可 ......
CF27D Ring Road 2
好一眼的题,据说出题人给的做法不是2-SAT,因此才会有这样的数据范围,但这个模型yysy实在是太典了啊喂 不难发现每条边的取法就是两种,并且内部和外部的边之间绝对不会相交,因此考虑使用2-SAT模型 枚举两条边\(i,j\),如果\(i,j\)同时放在一边会产生冲突,就钦定两者的状态必须相异,然后 ......
CF1119F Niyaz and Small Degrees 题解
原题 翻译 首先 \(O(n^2 \log n)\) 的 dp 是 simple 的,我们设 \(dp_{i,0/1}\) 表示以 \(i\) 为根, \(i\) 到 \(fa_i\) 这条边删/不删的最小权值和。转移是一个非常 trick 的问题,只需要假设所有都选 \(dp_{i,0}\) ,然 ......
CF553C Love Triangles
很有意思的一个题,想了一会才发现解题的关键 首先我们注意到对于某个大小\(\ge 3\)的连通块,其实连通块内的所有边的颜色都会被已知的边唯一确定 而不同的连通块间的连边方式有两种,因此设连通块个数为\(tot\),最后的答案就是\(2^{tot-1}\) 但还要考虑判掉不合法的情况,注意到不管是\ ......
CF1108F MST Unification
很丁真的一个题,权当复习下树上倍增的写法了 考虑先给图求出一个MST,那么很容易发现对于每条非树边\((u,v)\),它的权值必须严格大于MST上\(u,v\)之间所有边的权值,否则就可以用这条非树边来替换某一条树边 因此直接倍增维护树上两点间最大边权即可,复杂度\(O(n\log n)\) #in ......
Codeforces Round 896 (Div. 2) A. Make It Zero
给一个大小为 \(n\) 的数组 \(a\) \((n \geq 2)\) 。你希望进过一些操作使得 \(\forall i, a_i = 0\) 。 在一步操作中,可以选择 \(1 \leq l \leq r \leq n\) 并且执行: \(s = \bigoplus_{i = l}^{r} a ......
CF549B Looksery Party
这些题都是上周五写的了,周末两天因为比赛都没来得及写博客,只能到周一来补一补 这题做法很简单,考虑如果当前状态中\(\{a_i\}\)不含有\(0\)的话就已经得到一组合法解了 否则我们找到某个\(a_i=0\)的点,钦定让\(i\)这个人去派对即可,这样一定可以满足\(i\)这个人的条件,同时更新 ......
Educational Codeforces Round 153 (Rated for Div. 2) A. Not a Substring
给一个长度为 \(n\) 的括号字符串 \(a\) 。你需要构造一个长度为 \(2n\) 的合法括号字符串 \(b\) ,且满足 \(a\) 不是 \(b\) 的子串。或者回答不可能。 显然若 \(a = ()\) ,则一定不可能构造出 \(b\) ,否则可以。 观察到合法括号穿串中, \(()() ......
Codeforces Round 635 (Div. 2) B. Kana and Dragon Quest game
你需要击败一只巨龙,他有 \(h\) 点血量,你可以使用以下两种攻击方式: 黑洞:使巨龙的血量变为 \(\lfloor \frac{h}{2} \rfloor + 10\) 。可以使用 \(n\) 次。 雷击:使巨龙的血量变为 \(h - 10\) 。可以使用 \(m\) 次/ 当巨龙的血量 \(h ......
Codeforces Round 633 (Div. 2) A. Filling Diamonds
给定一个正整数 \(n\) ,询问有多少种方式填充满图中 \(4n - 2\) 的图。 你可以使用的菱形:竖着摆放和横着摆放都是一种方案。 显然选择某个位置竖着摆放,其他所有地方只能横着摆放,这样的位置有 \(n\) 个。 具体图形见:https://codeforces.com/problemse ......
Codeforces Round 637 (Div. 2) - Thanks, Ivan Belonogov! A. Nastya and Rice
纳斯塔亚掉了 \(n\) 个谷物,每个谷物的重量范围在 \([a - b, a + b]\) 。她猜测谷物的总重量范围在 \([c - d, c + d]\) 。询问她的猜测是否正确。 显然,若 \([n(a-b), n(a+b)]\) 和 \([c - d, c + d]\) 有交,则她的猜测正确 ......
Codeforces Round 641 (Div. 2) A. Orac and Factors
定义 \(f(x)\) 为 \(x\) 的 \(> 1\) 的最小因子。 给一个正整数 \(n\ (n \geq 2)\) 。对它执行 \(k\) 次操作:每次让 \(n = n + f(n)\) 。询问 \(k\) 次操作后 \(n\) 的值。 在唯一分解定理下观察 \(n\) :偶数的最小非 \ ......
Codeforces Round 636 (Div. 3) A. Candies
\(vv\) 有 \(n\) 个糖果,\(vv\) 记得这些糖果是按如下方式购买的: 第 \(i\) 天买了 \(2^{i - 1}x\) 个,总共买了 \(k\) 天,\(k > 1\) 。 但是 \(vv\) 忘了 \(x\) 是多少,询问任意一个满足条件的 \(x\) 。保证给出的 \(n\) ......
Testing Round 16 (Unrated) B. Square?
给定一个矩形,然后切成两个矩形。尺寸分别为 \(a \times b\) , \(c \times d\) 。你需要确定开始的矩形是否可能是个正方形。 假设初始矩形为正方形,则两个小矩形的长边是正方形的边长。不妨让 \(a \geq b, c \geq d\) 。只需判断 \(a = c, a = ......
CF1873E Building an Aquarium 题解
这题看到第一眼就是二分。 单调性 二分最关键的东西是单调性在哪。单调性是如果高度越高,需要的水就越多,高度越矮,要用的水越少。 不难得出代码: check 函数: int check(int mid){ int sum=0; for(int i=1;i<=n;i++){ sum+=max(0ll,m ......
CF1870E Another MEX Problem 题解
原题 翻译 首先 \(O(n^3)\) 的 dp 是 simple 的。设 \(dp_{i,j}\) 表示前 \(i\) 个划分后异或和为 \(j\) 是否可行。因为转移不具有连续性,故bitset无法优化(其实 \(O(\frac{n^3}{\omega})\) 也跑不过去) 官方做法: 定义对于 ......
CF863C 1-2-3
わたしが命を賭けるから あげるから
あなたは時間をくれたのでしょう?
あらゆる望みの総てを叶えたら ああ果たせたら
あなたに会いたい
星に願いをかけて ......
Educational Codeforces Round 87 (Rated for Div. 2) A. Alarm Clock
你总共需要睡满 \(a\) 分钟,第一个闹钟将会在第 \(b\) 分钟的时候响起。如果你醒来的时候睡眠不足,你会将脑子往后调 \(c\) 分钟,然后你需要 \(d\) 分钟的时间进入睡眠。假设第 \(0\) 分钟时你刚进入睡眠状态。 询问你最快能的起床时间,或者说明这是不可能的。 若 \(a \le ......
Educational Codeforces Round 90 (Rated for Div. 2) B. 01 Game
\(Alice\) 和 \(Bob\) 在玩一个 \(01\) 游戏,一开始有一个 \(01\) 串 \(s\) 。\(A\) 先开始,两人轮流操作。在每一步操作中,玩家可以选择 \(s\) 中两个相邻的不同数并且将他们删除。最后不能删数的玩家将失败。询问 \(Alice\) 是否可以获得胜利。 首 ......