CVPR 2023 | 超越MAE!谷歌提出MAGE:图像分类和生成达到SOTA!

发布时间 2023-03-23 20:25:36作者: CV技术指南(公众号)
前言 本文介绍了在一篇 CVPR 2023 论文中,来自 MIT 和谷歌的研究人员提出了一种全新的框架MAGE,同时在图像识别和生成两大任务上实现了 SOTA。

本文转载自机器之心

仅用于学术分享,若侵权请联系删除

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

CV各大方向专栏与各个部署框架最全教程整理

计算机视觉入门1v3辅导班

识别和生成是人工智能领域中的两大核心任务,如果能将二者合并到一个统一的系统中,这两个任务应该能实现互补。事实上,在自然语言处理中,像 BERT [1] 这样的模型不仅能够生成高质量的文本,还能够提取文本中的特征。

然而,在计算机视觉领域,目前的图像生成模型和识别模型大多是分开进行训练,没有充分利用这两个任务的协同作用。这主要是由于图像生成和图像识别的模型通常具有本质上的结构差异:图像生成的输入是低维度的特征或噪声,而输出是高维度的原始图像;与之相反,图像识别的输入是高维度的原始图像,而输出是低维度的特征。

最近,来自 MIT 和 Google Research 的研究人员提出了一种基于图像语义符掩码的表征学习方法,首次在一个统一的框架中实现了图像生成和表征学习,并在多个数据集上取得了 SOTA 表现。研究论文已被 CVPR 2023 接收,相关代码与预训练模型已开源。

MAGE: MAsked Generative Encoder to Unify Representation Learning and Image Synthesis

在 CVPR 2022 上,MAE [2] 提出了一种基于图像掩码(MIM)的表征学习方法,并在多个子任务上取得了非常好的效果。在高达 75% 的掩码率下,MAE 可以重构出与原图语义十分贴合的图像,并借此让网络能够自监督地学习图像中的特征。然而,如图 1 所示, MAE 重建的图像虽然具有与原始图像相似的语义信息,但会出现严重的模糊与失真问题。类似的问题也出现在所有基于 MIM 的表征学习方法中。同时,目前的生成模型,不管是扩散模型还是 GAN,都缺乏提取高质量图像特征的能力。

图 1:MAE 与 MAGE 重构对比

 

方法概述

针对上述问题,本文作者提出了 MAGE(Masked Generative Encoder),首次实现了统一的图像生成和特征提取模型。与MIM直接作用于图像的掩码方法不同,MAGE 提出了基于图像语义符的 masked image token modeling 方法。如图所示,MAGE 首先使用 VQGAN [3] 编码器将原始图像转换为离散的语义符。之后,MAGE 对其进行随机掩码,并使用基于 transformer 的 encoder-decoder 结构对掩码进行重构,重构后的语义符可以通过 VQGAN 解码器生成原始图像。通过在训练中使用不同的掩码率,MAGE 可以同时进行生成模型(接近 100% 掩码率)和表征学习(50%-80% 掩码率)的训练。如图 1 所示,MAGE 重建出的图像不仅具有与原始图像一致的语义信息,还能够同时保证生成图像的多样性与真实性。

图 2:MAGE 结构图

 

实验结果

MAGE 在多个图像生成与图像识别任务上都达到或超过了 SOTA。

在 ImageNet 的无监督图像生成任务中,MAGE 的 FID 从之前的 > 20 降至 7.04,甚至达到了有监督图像生成的水准(有监督 Latent Diffusion 在 ImageNet 上的 FID 为 3.60):

图3:MAGE 无监督图像生成样例

MAGE 还能够进行各类图像编辑工作,包括 image inpainting、outpainting、uncropping:

图 4:MAGE 图像编辑样例

 

在表征学习方面,MAGE 在 ImageNet linear probing、少样本学习、迁移学习等任务中,相较于目前的 MIM 方法有了大幅提升,并且可以达到或超过目前最优的自监督学习方法的水平。

结语

本文旨在将图像生成与表征学习统一起来。为此,本文作者提出了 MAGE,一种基于图像语义符掩码的自监督学习框架。该框架简洁、高效,并首次在图像生成和表征学习上都达到或超越了 SOTA 的表现。感兴趣的读者可以查看论文原文,以了解更多研究细节。

 

参考文献:

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[2] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked autoencoders are scalable ´ vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16000– 16009, 2022.

[3] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12873–12883, 2021.

 

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

计算机视觉入门1v3辅导班

【技术文档】《从零搭建pytorch模型教程》122页PDF下载

QQ交流群:470899183。群内有大佬负责解答大家的日常学习、科研、代码问题。

其它文章

目标跟踪方向开源数据集资源汇总

CVPR2023 | 书生模型霸榜COCO目标检测,研究团队解读公开

Vision Transformer的重参化也来啦 | RepAdpater让ViT起飞

高效压缩99%参数量!轻量型图像增强方案CLUT-Net开源

一文了解 CVPR 2023 的Workshop 都要做什么

CVPR'23 最新 70 篇论文分方向整理|包含目标检测、图像处理、人脸、医学影像、半监督学习等方向

目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度

PyTorch 2.0正式版来了!

计算机视觉/AI部署与算法/自动驾驶/深度学习资料合集!

CVPR2023最新Backbone | FasterNet远超ShuffleNet、MobileNet、MobileViT等模型

CVPR2023 | 集成预训练金字塔结构的Transformer模型

AAAI 2023 | 一种通用的粗-细视觉Transformer加速方案

大核分解与注意力机制的巧妙结合,图像超分多尺度注意网络MAN已开源!

MIRNetV2 更快、更强、更轻量!

AI部署与算法/自动驾驶/深度学习资料汇总!

点云模型专栏(一)概述、特性、存储格式、数据集

计算机视觉各个方向交流群与知识星球

【免费送书活动】 全新轻量化模型 | 轻量化沙漏网络助力视觉感知涨点

目标跟踪专栏(一)基本任务、常用方法

CV各大方向专栏与各个部署框架最全教程整理

一文尽览 | 自动驾驶中光流的应用、挑战和改进

目标检测、实例分割、旋转框样样精通!详解高性能检测算法 RTMDet

CV算法工程师卷得要死,部署工程师却成为了香饽饽

大卷积模型 + 大数据集 + 有监督训练!探寻ViT的前身:Big Transfer (BiT)

高效轻量级语义分割综述

超快语义分割 | PP-LiteSeg集速度快、精度高、易部署等优点于一身,必会模型!!!

数据集+插件,一把子解决遮挡下目标检测难题

AAAI | Panini-Net | 基于GAN先验的退化感知特征插值人脸修

一文带你掌握轻量化模型设计原则和训练技巧!

图像增强新思路:DeepLPF

LCCL网络:相互指导博弈来提升目标检测精度(附源代码)

与SENet互补提升,华为诺亚提出自注意力新机制:Weight Excitation

最新FPN | CFPNet即插即用,助力检测涨点,YOLOX/YOLOv5均有效

DeepLSD:基于深度图像梯度的线段检测和细化

CVPR 2023 | 基础模型推动语义分割的弱增量学习

消费级显卡的春天,GTX 3090 YOLOv5s单卡完整训练COCO数据集缩短11.35个小时

CV小知识讨论与分析(7) 寻找论文创新点的新方式

CV小知识分析与讨论(6)论文创新的一点误区

计算机视觉入门1v3辅导班

计算机视觉交流群

聊聊计算机视觉入门