【MT&PT】Central limit theorem, Law of large numbers

发布时间 2023-08-31 14:20:05作者: TangBao~

I Chebyshev inquation

  $E(X)=\mu,D(X)=\sigma^{2}$

  $P\{|X-\mu|>=\varepsilon\}<=\frac{\sigma^{2}}{\varepsilon^{2}}\\ it's\ equation:\\ P\{|X-\mu|<\varepsilon\}>=1-\frac{\sigma^{2}}{\varepsilon^{2}}$

  $Prove:$

  $X-f(x)$

  $P\{|X-\mu|>=\varepsilon\}=\int_{|x-\mu|>=\varepsilon}f(x)dx<=\frac{1}{\sigma^{2}}\int_{-\infty}^{\infty}(x-\mu)^{2}f(x)dx=\frac{\sigma^{2}}{\varepsilon^{2}}$

II Law of large numbers

$\lim_{n->\infty}P\{|\frac{f_{A}}{n}-p|<\varepsilon\}=1$

III Central limit theorem

$\frac{\sum_{k=1}^{n}X_{k}-n\mu}{\sqrt{n}\mu}\ samiler \ equal\ N(0,1)$

IV Simple of clt and it’s application

一船舶在海区航行,每次遭受海浪冲击,摇晃角大于3’的概率为$p=\frac{1}{3}$假设遭受了90 000次海浪冲击,其中有29 500~30 500次摇晃角度大于3’的概率是多少?

$Solve:$

$X~B(90\ 000,\frac{1}{3})$

$P\{X=k\}=C_{90\ 000}^{k}(\frac{1}{3})^{k}(\frac{2}{3})^{90\ 000-k},\ k=0,1,...,90\ 000$

$it's too complex of solving that using X~B,but we can using the 'clt' samiler the probaility$

$P\{29\ 5000 <=X<=30\ 5000\}=P\{\frac{29\ 5000-np}{\sqrt{np(1-p)}}<=\frac{X-np}{\sqrt{np(1-p)}}<=\frac{30\ 500-np}{np(1-p)}\}$

$it's\ samilier\ that:\\ \int_{\frac{29\ 500-np}{np(1-p)}}^{\frac{30\ 500-np}{np(1-p)}}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}dt$

$=\Phi(\frac{30\ 500-np}{\sqrt{np(1-p)}})-\Phi(\frac{30\ 500-np}{\sqrt{np(1-p)}})\\ =\Phi(\frac{5\sqrt{2}}{2})-\Phi(-\frac{5\sqrt{2}}{2})=0.999\ 5$