maximum 10827 torus sum
C - Sum of Numbers Greater Than Me
C - Sum of Numbers Greater Than Me https://atcoder.jp/contests/abc331/tasks/abc331_c 思路 由于 值 可以是重复的, 需要记录每出现的值 对应的位置 , 记录在 map<int, vector<int>> valpo ......
CF1442D Sum 题解
题目链接 点击打开链接 题目解法 \(n^3\) 的 \(dp\) 是显然的 但我们没用到 \(a\) 不降的性质 考虑一个很妙的结论:最优选法中,至多只有一个序列取了且未取满 为什么? 如果最优情况下,存在选且未选满的序列为 \(a,b\),第一个未选的元素为 \(x,y\) 如果 \(a_x>a ......
[Codeforces] CF1753A1 Make Nonzero Sum (easy version)
题目大意 给你一个数组 \([a_1,a_2,...a_n]\) ,其中每一项 \(a_i\) 都为 \(1\) 或 \(-1\) ,你需要构造一个划分 \([l_1,r_1],[l_2,r_2],[l_3,r_3],...[l_k,r_k]\) 使得: 将每一个区间内的数按照以下方法计算出\(s_ ......
qoj3542 Very Simple Sum 题解
题目链接 点击打开链接 题目解法 首先不知道 \(a_x+a_y+a_z+a_w\) 和 \(b_x\oplus b_y\oplus b_z\oplus b_w\) 肯定没法做,所以考虑求出和为 \(i\),异或和为 \(j\) 的方案数 考虑 \(x,y,z,w\) 都是在 \([1,n]\) 的 ......
[AGC052C] Nondivisible Prefix Sums 题解
题目链接 点击打开链接 题目解法 好题! 一个序列是不合法的,必定满足某些结论,我们不妨猜测一下 首先如果和为 \(P\) 的倍数,必定不合法 然后手玩几个可以发现,最极限的情况是 \(P-1\) 个 \(1\;+\;\) \(b_i\; + \;\) \(P-b_i\) 如果在这个情况下再加一个 ......
[LeetCode] 1685. Sum of Absolute Differences in a Sorted Array
You are given an integer array nums sorted in non-decreasing order. Build and return an integer array result with the same length as nums such that re ......
Codeforces Round 829 (Div. 1)A1. Make Nonzero Sum (easy version)(思维找规律)
先考虑无解的情况:当n为奇数时无解 相邻的两个元素一定可以变成0 \[a[i] != a[i + 1]时, 分成[i, i], 和[i + 1, i + 1] \]\[a[i] = a[i + 1]时, 分成[i, i + 1] \]这两种情况对答案的贡献都是0,当n为奇数时我们总会有一个没办法凑成 ......
Problem: A. Tricky Sum
A: 做法: 数据比较小,用求和公式(n+1)*n/2,减去所有2的幂即可 点击查看代码 // Problem: A. Tricky Sum // Contest: Codeforces - Educational Codeforces Round 1 // URL: https://codefor ......
SQL中累计求和与滑动求和函数sum() over()用法
sum()函数的升级用法,开窗函数(也叫分析函数)sum() over()一般有三种用法: a、分组求和 b、累计求和 c、滑动求和 我们以一个案例分别看下三种求和场景的SQL代码写法: 一、数据样本 我们的数据样本为一个名叫dws_js_team_gmv的底表,2个表字段依次为team_name( ......
ICPC2022Xian E Find Maximum 题解
Link ICPC2022Xian E Find Maximum Question 定义 \(f(x)\) 求 Solution 通过打表我们可以发现 \(f(x)\) 表示三进制表达中有效位数与数码和之和 接下来考虑如何获得最大的 \(f(x)\) 贪心的去考虑,假设答案为 \(Ans\),\(( ......
[ARC168E] Subsegments with Large Sums
题目链接 看到严格选 \(k\) 个,不难想到 WQS二分。定义 \(f(x)\) 为分成 \(x\) 段,最多有多少个超过 \(S\) 的。然后你会发现他不是凸的。因为他有很多平段,比如把两个很小的合并不改变答案。 换个方向? 考虑定义 \(f(x)\) 为有 \(x\) 个超过 \(S\) 的段 ......
[ARC168E] Subsegments with Large Sums
有点意思的简单题。 答案有可二分性。合并两段,显然仍然合法。 考虑如何 check。因为答案可以被二分,我们尝试求恰好 \(x\) 段就行了。 恰好,这是 wqs 二分的内容。如何设计一个与 \(x\) 有关的凸函数呢? 这个函数大概是 \(\sum_{i=1}^x w(l_i, r_i)\) 的形 ......
[ARC117E] Zero-Sum Ranges 2题解
题解 前言 个人认为官方题解写得最为详细、干净、清楚,如果有意向阅读外文版的题解的话,还是推荐去读一读: Editorial - AtCoder Regular Contest 117 本文属于转载(?),有一些自己的思考过程,希望有帮助。 题意 有多少个长度为 \(2N\) 的序列 \(A\) 满 ......
[LeetCode] 2824. Count Pairs Whose Sum is Less than Target
Given a 0-indexed integer array nums of length n and an integer target, return the number of pairs (i, j) where 0 <= i < j < n and nums[i] + nums[j] < ......
MySQL中count()、sum()区别
1、count0函数 里面的参数是列名的的时候,会计算有值项的次数sum(函数 里面的参数是列名的时候,会计算 列名的值的和。2、两个函数在 记录的列名的值为空或者是null时,都不会去统计即count(列名)和sum(列名) 都不计入这条记录 3、count()可以计算出行数,count (1)也 ......
DPS Digit Sum
题意 求 \(1 \to n\) 中有多少个数是 \(d\) 的倍数。 \(n \le 10 ^ {10000}\)。 Sol 数位 dp,设 \(f_{i, j, 1 / 0}\) 表示第 \(i\) 位,膜 \(d\) 等于 \(j\),是否贴住上限。 转移是 \(trivial\) 的。 Co ......
09-基础SQL-DQL(数据查询语言)-聚合函数(count、max、min、avg、sum)
DQL-介绍(常用) DQL英文全称是Data Query Language(数据查询语言),数据查询语言用来查询数据库中表的记录 查询关键字:SELECT DQL-语法 ......
【题解 CF1628D2】 Game on Sum
Game on Sum (Hard Version) 题面翻译 Alice 和 Bob 正在玩一个游戏,游戏分为 \(n\) 个回合,Alice 和 Bob 要轮流对一个数 \(x\) 进行操作,已知这个数初始值是 \(0\)。 具体每个回合的行动规则如下: Alice 选择一个在区间 \([0,k ......
How to use SUM and DINSTINCT with GreenDao?
How to use SUM and DINSTINCT with GreenDao querybuilder? Ask Question Asked 7 years ago Modified 6 years, 7 months ago Viewed 1k times Part of Mobile ......
[ARC107F] Sum of Abs 题解
题意 给定一个 \(N\) 个点,\(M\) 条边的简单无向图,每个节点有两个值 \(A_i\) 和 \(B_i\)。 现对于每个节点,均可以选择花费 \(A_i\) 的代价将其删去或保留节点。若一个节点被删除,那么所有与其向连的边也会被删除。 定义一个极大联通块的权值为联通块内所有节点的 \(B_ ......
[USACO23FEB] Equal Sum Subarrays G 题解
[USACO23FEB] Equal Sum Subarrays G 题解 题目链接 \(O(n^5)\) 暴力 显然,如果修改 \(a_i\) 的值,只会影响包含 \(a_i\) 的区间的区间和。于是对于每个 \(a_i\),可以将所有区间分成两类,即包含 \(a_i\) 的区间和不包含 \(a_ ......
[题解] ABC282Ex Min + Sum
Min + Sum 给你两个序列 \(a\)、\(b\) 和 \(S\),求满足一下条件的区间 \([l ,r]\) 的数量: \(\sum_{i = l}^r b_i + \min_{i = l}^r a_i \le S\)。 \(n \le 2 \times 10^5\)。 考虑按最小值分治,即 ......
CF1485F Copy or Prefix Sum 题解
思路 考虑 \(a_i\) 要么是 \(b_i\) 要么是 \(b_i - s\)。 考虑 \(s\) 代表着什么。 它是 \(a\) 的前缀和。 那么必然是往前一段 \(b\) 的和。 因为每个 \(b\) 代表着要么是这一位的 \(a\) 或者前面所有的 \(a\)。 考虑设 \(f_i\) 为 ......
LeetCode #1131 Maximum of Absolute Value Expression 绝对值表达式的最大值
安装Flutter环境首先配置flutter3开发环境,照着官方教程傻瓜式安装即可。>>安装和环境配置 | Flutter 中文文档 | Flutter 中文开发者网站注意在国内网络环境下需要进行一些额外的环境配置:>>在中国网络环境下使用 Flutter | Flutter 中文文档 | Flut ......
Maximum Balanced Circle
here 首先根据题意,我们不难有数字是连续的这种感悟。 而且限制是值域上的,从下标入手发现难以突破,便从值域上入手。 从小到大考虑每个数字,然后dp,可以参考这篇题解。 至于方案的输出,有两种情况。 只有自己\(i\)和\(i-1\),直接输出即可。 有自己和\(i-1\)的环,定义print输出 ......
[AGC030C] Coloring Torus 题解
非常巧妙的一道构造题,发现对于所构造的 \(n\) 有上限,那么对于 \(K<=500\) 的情况,很好构造,每行全是一个数就行了,对于 \(K>500\) 的情况,显然每行都是 \(1,2,...,n\) 的循环同构构造就行了,也可以理解是斜着填,然后对于剩下的 \(K-500\) 个数,每次选择 ......
查询列表时参数有限制提示The server supports a maximum of 2100 parameters.
1 public ActionResult Export(SAPPRItemSearchVM searchvm) 2 { 3 searchvm.SetFilter(MyPRItemReader, this.GetWorkingUser(true)); 4 5 IList<SAPPRItemDTO> ......
P9821 [ICPC2020 Shanghai R] Sum of Log
原题链接 题意,求: \[\sum_{i=0}^{X}\sum_{j=[i=0]}^{Y}[i\&j=0]\lfloor\log_2(i+j)+1\rfloor \]为简洁,记 \(\lg(x)=\lfloor\log_2(x)\rfloor,n=\max(X,Y)\) 由于 \(i\&j=0\) ......
P1466 [USACO2.2] 集合 Subset Sums
P1466 USACO2.2 集合 Subset Sums 毫无思路 如果不告诉我这题是DP题,我一定会爆搜。 看了题解,很妙。 居然也能套背包板子。 定义F[i][j]为在前\(i\)个数中选择一些数其和为\(j\)的方案总数。 显然转移方程F[i][j] = F[i - 1][j] + F[i ......